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Abstract 

Additive manufacturing (AM, or 3D printing) for commercial nuclear energy applications is an 

emerging method for cost-efficient manufacturing aimed at replacing aging nuclear reactor parts 

and reducing costs for new construction. Known material flaws in AM include low-density regions 

consisting of non-sintered powder, which have to be detected to ensure the safety of long-term 

performance nuclear reactor components. Currently, limited options are available for 

nondestructive evaluation (NDE), either during or post manufacturing. As a solution to NDE of 

AM, we are developing pulsed thermal imaging which is non-contact, one-sided, and scalable to 

arbitrary size and shape of the AM parts. Pulsed thermography (PT) system utilizes a high intensity 

flash lamp to rapidly heat surface of sample, and a high sensitivity fast-frame megapixel infrared 

(IR) camera to capture data of surface temperature variations. The acquired data cube consists of 

a stack of surface temperature images taken at different times. Information about material internal 

defects is extracted by analyzing the data cube.   

This report provides results of preliminary performance evaluation of pulsed thermal imaging 

capability in detection of imprinted flaws in AM metallic structures. The flaws were introduced 

into AM parts as imprinted hemispherical low density regions, consisting of trapped un-sintered 

metallic powder. Specimens for developed for this study consisted of AM stainless steel 316 and 

Inconel 718 plates. The diameters of imprinted defects varied from 1mm to 8mm, and their depths 

below the plate flat surface varied between 1mm and 6mm.  

Pulsed thermal tomography (PTT) processes the measured data cube to obtain 3D 

reconstructions of material effusivity using a unique inversion algorithm developed at Argonne. 

PTT has been previously used in imaging of similar size flat bottom hole (FBH) simulated defects 

in stainless steel 316 and Inconel 718 specimens. In the study involving AM specimens, PTT 

imaging results have shown that 1mm-diameter defects located 1mm and 2mm below the surface 

of specimens were detectable. Larger size defects were detectable at greater depth. 

We also explored an alternative approach to detection of material flaws in PT data cube, which 

is using neural learning-based approach to blind source separation. Detection of small material 

defects requires finding features in the data cube which have signal contrast levels approaching 

sensitivity limit of IR camera. In this study, an optimized Neural Learning based Blind Source 

Separation (NLBSS) algorithm, including Principal Component Analysis (PCA), and Independent 

Component Analysis (ICA) is demonstrated to automatically extract principal temporal and spatial 

features of thermography frames to enhance flaw detection. By using the NLBSS algorithm, 

material internal defects can be automatically detected. Furthermore, this processing approach 

compensates for experimental thermal imaging artifacts, such as noise and uneven heating. By 

merging artificial intelligence with phtotothermics, the NDE system detects internal calibrated 

defects of various sizes and depths in AM nuclear-grade metallic alloys. 
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1. Introduction 

Additive manufacturing (AM) for nuclear energy applications is an emerging method for cost-

efficient manufacturing aimed at replacing aging nuclear reactor parts and reducing costs for new 

construction of advanced reactors [1,2]. In addition, AM However, there are still challenges for 

widespread deployment of AM in nuclear reactors, particular the ability to perform nondestructive 

evaluation (NDE) of AM parts. Because of the intrinsic features of AM process for fabricating 

stainless steel and nickel super alloys metallic parts, such as selective laser melting (SLM), defects 

can appear consisting of low density regions or pores. Figure 1 provides a schematic visualization 

of the SLM process. In Step 1, the system prepares the powder bed for fabrication. Step 2 consists 

of selective melting and fusing of powder particles. Porosity can be introduced into AM parts due 

to incomplete melting of the powder particles or insufficient overlapping of the melt pools [3]. 

Oscillations in the surface of the melt pool caused by rapid heating and cooling result in powder 

ejection and splattering of the melt, resulting in surface roughness and porosity [4]. Furthermore, 

improper cooling rates can cause the formation of non-equilibrium phases and residual stresses, 

requiring post-process heat treatments [5-7].  The pore is potentially a seed for crack formation in 

the structure due to non-uniform expansion of the material in response to thermal and mechanical 

stresses in nuclear reactor [8,9]. Pores have been observed in destructive examinations to be on 

the order of 20µm and larger.   

 
(a)                                                                                   (b) 

Figure 1 – Overview of SLM: (a) Step 1 prepares the powder bed (b) Fabrication occurs in 

Step 2 where porosity can be introduced into AM metallic parts due to incomplete melting 

of powder particles or insufficient overlapping of melt pools  

 

Currently, there exist limited options for nondestructive examination (NDE) of AM structures 

either during or post-manufacturing. During manufacturing phase, spatial constraints of the 3-D 

printer limit deployment of many conventional NDE systems, such as radiography. Furthermore, 

in DLS manufacturing, a metallic part is covered by un-sintered powder. This prevents the use of 
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contact methods, such as ultrasound, and obscures signals from non-contact methods, such as 

passive thermography. In post-manufacturing phase, complex shapes composed of planar 

geometrical primitives with lack of rotational symmetry make it difficult to perform digital 

radiography. Contact NDE techniques, such ultrasound, would be difficult because AM structures 

have rough surfaces which affects probe coupling. In addition, NDE methods such as ultrasound 

and eddy currents require time-consuming point-by-point raster scanning of specimens. As a 

solution to NDE of AM structures, Argonne is developing pulsed thermal tomography (PTT) 

models and depth inversion algorithms for 3D imaging and flaw detection. PTT obtains 

reconstruction of material internal defects by monitoring surface temperature transients following 

thermal pulse applied to material surface. The method is non-contact, with measurements 

performed from stand-off distance from one side of the specimen. An imaging camera with 

megapixel array of detector elements acquires an image of a large section of material. This allows 

for detection of flaws with minimal amount of mechanical scanning.  

A schematic depiction of the PTT setup is shown in Figure 2(a), with the photograph of the 

laboratory system presented in Figure 2(b). The method consists of illuminating material with 

white light flash lamp, which rapidly deposits heat on the material surface [10-14]. Heat transfer 

then takes place from the heated surface to the interior of the sample, resulting in a continuous 

decrease of the surface temperature. A megapixel fast frame infrared (IR) camera records time-

resolved images of surface temperature distribution T(x,y,t). The acquired thermal-imaging data 

cube therefore consist of a series of 2D images of the sample’s surface temperature at consecutive 

time instants. The unique reconstruction algorithm of PTT developed at Argonne obtains thermal 

effusivity e(x,y,z) from time-dependent surface temperature T(x,y,t) measurements.  

 

     
                                  (a)                                                                   (b) 

Figure 2 – Principle of pulsed thermal imaging: (a) Schematic drawing (b) Photograph of 

actual laboratory system  

 

Project objectives addressed in this report include development of performance metrics for 

PTT detection of flaw size and flaw location relative to material surface. Section 2 described 

preliminary experimental results of PTT performance evaluation using calibrated defects in high-

strength metallic alloys commonly used as reactor structural materials. These include stainless 

steel 316 and Inconel 718 alloys. Calibrated flaws consisted of cylindrical of variable diameter and 
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depth imprinted in metallic plates. The results obtained thus far indicate that PTT can image flaws 

1mm in size, which is the smallest calibrated flaw created in metallic specimens. Consistent with 

previous results of the project, results of experiments in Section 3 indicate the general trend in PTT 

performance that smaller defects can be detected when they are closer to the surface  

Section 3 describe the preliminary results of alternative machine learning based analysis of the 

same data cube analyzed with PTT in Section 2. In this study, an optimized Neural Learning based 

Blind Source Separation (NLBSS) algorithm, including Principal Component Analysis (PCA), and 

Independent Component Analysis (ICA) is demonstrated to automatically extract principal 

temporal and spatial features of thermography frames to enhance flaw detection [15]. Conclusions 

and brief future work are outlined in Section 4. 
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2. Pulsed Thermal Tomography Imaging of Calibrated Defects 
in Additively Manufactured Metallic Specimens 

2.1. Development of additively manufactured specimens with 
imprinted calibrated defects 

Calibrated defects developed in this project for evaluation of PTT performance consisted of 

hemispherical pores imprinted into AM metallic plates. The same pattern of defects was designed 

for metallic AM stainless steel 316 (SS316) and Inconel 718 (IN718) plates. The plates were 

produced with the SLM method, and the pores containing un-sintered metallic powder were 

imprinted into the plates during fabrication. A computer rendering of the pattern of holes is shown 

in Figure 3.  

 

 
Figure 3 – 3-D rendering of FBH pattern imprinted in AM SS316 and IN718 metallic plates  

 

Figure 4 provides a drawing with labels showing diameters and depths of the holes. Note 

that there are two patterns of defects on the plate: one with diameters 5,6 and 8mm and depths 

2,3,4, and 5mm, and another one with diameters 1,2,3, and 4mm and depths 1,2,3 and 4mm. The 

holes diameter decreases along the lines parallel to the longer side of the plate, while the depth 

along each line is held constant. Along the lines parallel to the shorter side of the plate, the depth 

increases, while the diameter is fixed. The pattern of the defects is the same as that used in a 

previous study involving simulated flat bottom hole defects (FBH) in SS316 and IN718 plates 

[10]. 



8 
 

 
Figure 4 – Design of hemispherical defetcs of different diameters and depths relative to 

plate surface 

 

Figure 5 shows the photograph of two AM SS316 and one IN718 plates. The dimensions of the 

plates are Length×Width×Thickness: 154 mm × 72 mm × 10 mm. The plates are smooth on both 

sides. 

 

 
Figure 5 – Photograph of AM SS316 and IN718 plates 

  

 

 



9 
 

2.2. PTT imaging of calibrated defects in additively manufactured 
specimens 

The AM metallic plates were imaged with the plates positioned in a way that the spherical side of 

the internal defects was oriented towards the IR camera. Figure 6 shows the photograph of the 

setup. For better absorption of thermal energy, all specimens were spay-painted with washable 

graphite paint. Distribution of incident thermal pulse on the plate is not uniform because the flash 

light illuminates the metallic plate at an angle. To compensate for this, we have fitted the intensity 

distribution in the camera frame containing a flash with a polynomial, and then used this 

polynomial for correction of image intensity in every subsequent frame. The plates were imaged 

with FLIR X8501sc IR camera with 768x520 pixels window at 216Hz resolution rate. The total 

imaging time to acquire frames for reconstruction is approximately 8s. 

 

 
Figure 6 – Imaging of internal imprinted defects in AM metallic plates 

 

2.2.1. PTT imaging of Stainless Steel 316 plate with flat bottom holes 

Stainless steel 316 (SS316) is frequently used for manufacturing pressure vessel components in 

light water and advanced reactors because of the alloys high strength and resistance to corrosion. 

Figure 7 shows reconstructed images of larger FBH at different depths in the material. The left 

panel of Figure 7 shows the imaged area of the plate. The right panel shows reconstructed parallel 

plane slices estimated at 2mm, 3mm, 4mm, and 5mm depths. The first column of defects imprinted 

at 2mm depth and the largest defect at 3mm depth appear in the parallel place slice at 2mm depth.  

The column of defects imprinted at 2mm and 3mm depth appear in the plane slice reconstructed 

at 3mm depth. The pattern continues with three and four columns of imprinted appearing in the 

4mm and 5mm depth plane slices, respectively.  As expected, imaging contrast is better for larger 
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defects located closer to the surface of the plate. The smallest defect in the imaged plate area with 

5mm diameter can be seen as a faint signature in the 5mm depth reconstruction. The reason for 

appearance of defects imprinted at greater depth in reconstruction planes at shallower depth could 

be attributed to uncertainty in reconstruction and uncertainty in actual location of the imprinted 

defect,  

 
Figure 7 – Reconstruction of larger defects in SS316 plate. (Left) Imaged area. (Right) 

Reconstructed parallel plane slices at 2mm, 3mm, 4mm and 5mm depths    

 

Figure 8 shows reconstructions of parallel plane slices of smaller imprinted defects in the SS316 

plate. The left panel of Figure 8 indicates the imaging area of the plate. The right panel of Figure 

8 contains reconstructions of parallel plane slices at 1mm, 2mm, 3mm and 4mm depths. All defects 

down to 1mm size are visible at 1mm depth place slice. At 2mm depth, holes down to 2mm size 

are clearly visible, and there is a faint signature of the 1mm-diamter defect. At 3mm depth, the 

smallest visible defect is the 3mm-diameter one. At 4mm depth, the 4mm defect can be detected. 

Note that these are preliminary qualitative observations. With additional signal processing and 

thresholding, visibility of smaller size defects might be enhanced. 
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Figure 8 – Reconstruction of smaller defects in SS316 plate. (Left) imaged area (Right) 

reconstructed parallel plane slices at 1mm, 2mm, 3mm and 4mm depths    

 

 

2.2.2. PTT imaging of Inconel 718 plate with flat bottom holes 

Inconel 718 (IN718) is used for manufacturing of components inside the pressure vessel as an 

alternative to SS316. Parallel plane slice reconstructions of larger defects in the IN718 at various 

depths are shown in Figure 9. Left panel of Figure 9 shows the imaged area, which consists of 

larger defects in the IN718 plate. The right panel of Figure 9 shows parallel plane slices at 2mm, 

3mm, 4mm, and 5mm depth. The first three reconstructed images show clearly identifiable defects, 

while the last reconstruction at 5mm depth is becoming difficult to interpret. The smallest defect 

of 5mm size can be seen in the 5mm depth plane slice.  
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Figure 9 – Reconstruction of larger defects in NI718 plate. (Left) Imaged area. (Right) 

Reconstructed parallel plane slices at 1mm, 2mm, 3mm and 4mm depths    

 

 

Figure 10 shows reconstructions of smaller imprinted defects in IN718 plate. The left panel shows 

the imaged area of the plate. The right panel shows reconstructed parallel plane slices at 1mm, 

2mm, 3mm, and 4mm depths. The smallest defect with 1mm diameter is clearly visible in the 1mm 

depth plane slice. The plane slice at 2mm depth show the first two columns of the defects. The 

smallest visible defect is the one with 2mm diameter. Reconstruction at 3mm depth shows blurry 

images of holes, with the smallest defect of 3mm dimeter. The plane reconstructed at 4mm depth 

shows faint indications of defects with 3mm and 4mm diameters. Overall, the results are similar 

to PTT reconstructions of the SS316 plate.  
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Figure 10 – Reconstruction of smaller defects in NI718 plate. (Left) Imaged area. (Right) 

Reconstructed parallel plane slices at 1mm, 2mm, 3mm and 4mm depths    

 

.  
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3. Neural Learning Based Blind Source Separation for 
Detection of Material Defects in Pulsed Thermography 
Images 

Detection of fine features in thermal images is affected by image thermal noise patterns [16], 

uneven heating of the specimen, and edge blurring. Image processing algorithms should be applied 

to enhance defect detection efficiency. Traditional image processing methods, such as Gaussian 

filtering, histogram equalization and sharpening can improve defect detection, but each one is 

limited to solving a single problem. Recently, algorithms such as Pulsed Phase Thermography 

(PPT) [17] have been proposed to improve thermal imaging quality. The PPT transforms data from 

time-domain into frequency spectra using one-dimensional Discrete Fourier Transform (DFT) to 

extract phase features. The PPT method can reduce the effect of uneven heating but is vulnerable 

to high-frequency noise [17]. A method called Thermographic Signal Reconstruction (TSR) can 

robustly increase resolution of thermography frames, enhance visibility of defects in temporal and 

spatial domain [18].  However, TSR algorithm is inefficient since a very large number of frames 

need to be analyzed. 

We have developed Neural Learning based Blind Source Separation (NLBSS) algorithm, 

which not only enhances defect detection in time and space, but also automatically separates 

defects from background and identifies the presence of defects [15]. In NLBSS, we use Principal 

Component Analysis (PCA) [19] to extract principal features of thermography data, thus reducing 

thermal imaging noises and artifacts. Next, the Independent Component Analysis (ICA) [20], 

implemented in a two-layer neural network structure, is applied to automatically separate image 

regions containing signatures of material defects from image regions which do not contain any 

material flaws. The neural network structure utilizes the fast fixed-point algorithm for optimization 

to speed up the defect detection. This approach is computationally simple and requires little 

memory space. By applying the NLBSS algorithm to experimental thermography data, calibrated 

subsurface defects of various depths and sizes for the AM metallic material were detected.      

3.1. Neural learning based blind source separation 

As heat deposited on material surface starts diffusing into the bulk, surface temperature is rapidly 

decreasing. Material defects, such as pores containing un-sintered powder, have much lower 

thermal diffusivity compared to solid material. Such material defects are acting as thermal 

resistances which slow down heat diffusion. This leads to appearance of transient “hot spots” on 

material surface. These are regions on the surface located above material defects, along the 

direction of heat diffusion. This concept is further elucidated in Figure 11. The red and green 

curves show temperatures as functions of time for points in surface regions located above defects 

and not located above defects, respectively. Temperatures of both points rise rapidly at the same 

rate during the first second as a result of uniform heat deposition on material surface with a flash 

lamp. After reaching the maximum at approximately t=1s, both temperatures begin to decay, 

initially at the same rate. However, after approximately t=2s, the red curve decays at a much slower 
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rate than the green curve, which gives rise to surface “hot spot.” At a given time, the contrast 

temperature of the “hot spot” can be obtained from the difference between red and green curves. 

For example, at t=2s, the contrast temperature of the “hot spot” is approximately 3oC. The “hot 

spot” is visible between t=2s, when the diffusing heat front first encounters the material defect, 

and t=7s, when material reaches thermal equilibrium.  For the temperature values shown in the 

graphs in Figure 11, the “hot spot” is easily detectable by IR camera with NETD=20mK. However, 

for smaller material defects, “hot spot” contrast begins to approach the NETD of a camera. 

Detection of signals close to camera NETD sensitivity threshold, requires image processing to 

remove noises and experimental artifacts. Therefore, we apply the NLBSS algorithm to enhance 

defect detection by the independent source signal separation of defects and non-defects regions for 

flaws detection. 

 

 
Figure 11 – Surface temperature evolution of points in regions above defect (red) and no-

defect (green) 
 

     Blind source separation aims at classifying mixed signals into independent source signals 

without using any a-priori information about the source of signals. In the PT system, the recorded 

thermography frames (thermograms) are composed of signals from different sources, such as 

image regions corresponding to defects, regions of no-defects, and noise. Each segment of the 

thermograms exhibits different temperature evolution during the transient response. In the notation 

of this paper, each source signal contributes to the Thermal Source Image (TSI). We utilized the 

NLBSS algorithm to classify TSI and thus to detect defects. The principle of NLBSS is shown in 

the flowchart in Figure 12. 
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Figure 12 – Flowchart of Neural Learning-based Blind Source Separation algorithm 

 

As shown in Figure 12. The observed thermograms Y are mixed with different source 

signals that need to be separated. As seen in Figure 12, PCA is used to pre-process thermograms 

Y to obtain principal components U. Next, the principal components become inputs to the neural 

learning-based ICA to estimate independent source signals  Ŝ, which are TSI’s of defects.  W is 

the estimation matrix for separating the mixed thermograms into TSIs of defects. The neural 

learning-based ICA is implemented in a neural network structure, which is composed of an input 

layer and an output layer. The principal components of thermograms U form the input layer, and 

each estimated source signal Ŝ as a neuron forms the output layer. The input layer and output layer 

are densely connected. 

 
3.1.1. Principal component analysis  
 

We use the Singular Value Decomposition (SVD) to calculate Principal Components (PC). This 

approach to calculating PC’s is faster and suffers less from numerical noise than the more 

conventional approach based on the covariance matrix. The equation for calculating PC’s via 

singular values is given as:  
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                               𝑌𝑀×𝑁 =  𝑈𝑀×𝑁𝑅𝑁×𝑁𝑉𝑁×𝑁
𝑇                                                                     (1)  

 

To obtain the PC’s of the thermography data-cube matrix using equation (1), we transform 

the 3D matrix (two spatial and one time axis) into a 2D matrix (one spatial and one time axis) by 

re-arranging pixels in each thermography frame into a column vector. The dimensions of the 

condensed 2D matrix 𝑌 are M and N, where M is the number of pixels in each thermography frame, 

and N is the number of recorded thermography frames. 𝑈 and 𝑉 are orthogonal matrices separately 

showing variability of data and time information. 𝑅 is the matrix containing the singular values of 

𝑌. By decomposing the thermography data 𝑌 with SVD, matrix 𝑈 is constructed with principal 

component analysis (PCA) basis vectors that describe the largest variability in the data using the 

first few columns (𝑁𝐼) of 𝑈. These PCA basis vectors are decorrelated to enhance the performance 

of ICA. Thus, we use only few basis vectors of 𝑈, which contain principal features of data, as input 

to ICA estimator for detection of flaws.    

  

3.1.2. Independent component analysis 
 

In the PT system, the surface temperature of each image region corresponding to defect (“hot 

spot”) displays the non-Gaussian distribution during transients. However, the distribution of the 

sum of N independent source signals approaches Gaussian distribution as N →  ∞ regardless of 

the distribution of each signal [9]. Thus, using the mixed thermography data, which is Gaussian,  

ICA is applied to obtain a separation matrix W by maximizing the non-Gaussian distribution to 

detect defects.  Equation 2 is used in estimating the TSI of defects �̂� to be as close to the original 

source signal 𝑆 as possible,  

                                     �̂� =  𝑊𝑈𝑇  ≈ 𝑆                                                                                 (2) 

                                     𝐸{�̂��̂�𝑇} =  𝐼                                                                                       (3)  
 

In equation (2), 𝑈 is the matrix consisting of principal components of pre-processed 

thermography data, and 𝑊 the separation matrix. In order to achieve high efficiency in defects 

detection, original source signals need to be statistically uncorrelated and non-Gaussian [9]. Thus 

the estimated TSIs of defects are constrained to be uncorrelated under equation (3). Because we 

apply the PCA to pre-process the thermography data to be uncorrelated in matrix 𝑈, equation (3) 

is transformed into equation (4) as below:  
 

                                 𝐸{�̂��̂�𝑇} = 𝑊𝐸{�̂��̂�𝑇}𝑊𝑇 = 𝑊𝑊𝑇 =  𝐼                                      (4)   
 

In equation (4), the separation matrix 𝑊 needs to be orthogonal so that the estimated TSIs 

of defects �̂� are uncorrelated. Therefore, we applied the neural learning to implement ICA, and use 

the fast fixed-point algorithm for optimization to obtain 𝑊 for defects detection.            

The fast fixed-point algorithm is aimed to find a direction to maximize the non-Gaussian 

properties. In one unit version of this algorithm, to estimate one independent source signal, we 

need to find a unit vector 𝑤𝑖, so that the projection 𝑤𝑖
𝑇𝑈𝑇 maximizes the non-Gaussian. Here 𝑤𝑖

𝑇 

is the 𝑖th row vector of matrix 𝑊. Each unit is optimized as a neuron, which is updated with the 
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learning rule. For the multi-unit version of this algorithm, multiple output neurons are built to 

estimate different source signals. Negentropy [20] is approximated to measure the non-Gaussian:  
 

                                𝑂(𝑤) = [𝐸{𝐺(𝑤𝑇𝑈𝑇)}  −  𝐸{𝐺(𝑔)}]2                                                 (5)  
 

      Equation (5) shows the approximation of negentropy to measure the non-Gaussian as our 

objective function 𝑂(𝑤). 𝐺 is any nonquadratic function as the contrast function for performance 

optimization. Here 𝑔 is the Gaussian variable with zero mean and unit variance. Then, we use the 

Newton-Raphson Method [21] to iteratively update the unit vector 𝑤 for maximizing the objective 

function 𝑂(𝑤) under the constraint given in Equation (4). The specific updates and estimate of 𝑤 

can be found in [21]. If the convergence is not satisfied, which means that the old and new values 

of 𝑤 still point to different directions, we use the new value of 𝑤 to initiate another iteration. 

Otherwise we apply the direction vector 𝑤 to estimate the independent source signal which, is the 

TSI of defects in the thermal images.   

 

3.2 Experimental Results 

To evaluate performance of the NLBSS algorithm, a thermal pattern graph is constructed to show 

the estimated TSI of defects. In the experiment, surface regions of defects with similar temperature 

variation are classified as one TSI. Then, the TSI is highlighted to display defects. In the 

experiment, the specimen is oriented as shown in Figure 5(a).  Two separate experiments were 

conducted. In one, the lower half of the AM plate was imaged to detect larger defects. In another 

experiment, the upper half of the AM plate was imaged to detect smaller defects. In each 

experiment, the camera frame resolution was set to be 576×520 pixels. After thermography frames 

are acquired by the PC, the NLBSS algorithm is applied to data. We used N = 12 as the number 

of independent components, which are output neurons, to estimate TSI of defects. The number of 

principal components was set to N1 = 50 to reduce noise in the images.  

 
3.2.1. Detection of larger defects  
 

PT imaging was performed on the lower half of the AM plate, as indicated with the red box in 

Figure 13(a).  As shown in Figure 13(a), the defects have diameters of 5 mm, 6 mm, 8 mm, and 

located at depths of 2 mm, 3 mm, 4 mm and 5 mm. An example of a recorded raw image is shown 

in Figure 13(b). Results of image processing and defect detection using NLBSS algorithm are 

shown in Figures 13(c) and 13(d). The defects detected in this experiment are indicated with 

dashed line ovals in Figure 13(a). In particular, Figure 13(c) clearly shows the defect (∅8,d2), and 

Figure 5(d) shows the defect (∅8,d3), defect (∅8,d4), defect (∅6,d2), defect (∅6,d3), and defect 

(∅5,d2). The defect (∅5,d3), defect (∅6,d4), and defect (∅8,d5) are detected with relatively lower 

confidence.  
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Figure 13 – Detection of larger defects in SS316 specimen 

 

3.2.2. Detection of smaller defects 

The experiment was repeated to detect smaller defects in the AM plate. The imaged area of the 

plate is indicated with a red box in Figure 14(a). Note that Figure 14(a) is Figure 13(a) rotated by 

180 degrees. Figure 14(a) shows smaller defects with diameters of 4 mm, 3 mm, 2 mm and 1 mm, 

and located at depth of 1 mm, 2 mm, 3 mm, 4 mm and 5 mm.  Figure 14(b) shows the raw 

thermogram image recorded with IR camera. After processing the thermograms with the NLBSS 

algorithm, Figure 14(c) and Figure 14(d) show that the improved detection of defect (∅4, d1), 

defect (∅3, d1), and defect (∅2, d1), defect (∅4, d2), defect (∅3, d2), and defect (∅2, d2). Detected 

defects are indicated in Figure 14(a) with dashed line ovals. 
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Figure 14 – Detection of smaller defects in SS316 specimen 
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4. Conclusions 

The objective of this report is to provide initial evaluation of pulsed thermal tomography (PTT) 

performance in detecting calibrated imprinted flaws in AM reactor structural materials. The 

materials considered in this study included AM stainless steel 316 and Inconel 718 manufactured 

with SLM. Calibrated defects were created in the form of hemispherical shape pores containing 

trapped un-sintered powder. Defects were imprinted into metallic plates during fabrication. The 

diameters of defects varied from 1mm to 8mm, and their depths below the plate flat surface varied 

between 1mm and 6mm. The sizes of the defects were chosen to be the same as those of the flat 

bottom hole (FBH) simulated defects in a previous study. PTT imaging results have shown that 

1mm-diameter defect located 1mm below the surface in SS316 and IN718 plates were detectable. 

Larger size defects were detectable at greater depth. For example, 6mm-diameter defect could be 

detected at 8mm depth. Image contrast was comparable for SS316 and IN718 specimens. 

As an alternative approach to analyzing pulsed thermography images to detect internal 

material flaws, we developed the Neural Learning-based Blind Source Separation algorithm 

(NLBSS). In the NLBSS algorithm, the Principal Component Analysis (PCA) is applied to pre-

process recorded thermograms to enhance defect detection by reducing thermal imaging noise and 

other experimental artifacts, such as non-uniform illumination of the specimen. Next, Independent 

Component Analysis (ICA) is used to estimate Thermal Source Images (TSIs) of defects. The ICA 

is implemented as a two-layer neural network structure, which utilizes the fast fixed-point 

algorithm for optimization. Our results indicate that internal defects with smaller diameter and 

deeper location are more difficult to detect. The reason is that defects of smaller size, located 

farther from the surface have less effect on reducing the heat diffusion, and thus result in low 

thermal contrast “hot spots” on the specimen surface. Therefore, to further improve the 

performance of flaws detection, future work will involve optimizing our NLBSS algorithm, such 

as deploying advanced neural networks as the hidden layers using the transfer learning, to 

efficiently extract features of thermograms to enhance defect detection.   
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